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Abstract

This paper focuses on characterizing damaged anisotropic piezoelectric materials by using the principles of fracture
mechanics. The interpretation and evaluation of the two components of the J;-vector along contours enclosing strongly
interacting microcracks in two-dimensional piezoelectric materials are presented. The conservation laws of the J;-vector
established by Budiansky and Rice (ASME J. Appl. Mech. 40 (1973) 201) for traditional non-piezoelectric materials
and extended by Chen and Hasebe (Int. J. Fract. 89 (1998) 333) and Chen (Int. J. Solids Struct. 38 (2000a) 3193 and 38
(2000b) 3213) for interacting multiple cracks are reexamined for anisotropic piezoelectric materials containing inter-
acting multiple cracks. The interaction problem for arrays of arbitrarily orientated and distributed microcracks sub-
jected to mechanical and electrical loading is studied in detail. The contribution of the second component of the
Ji-vector, evaluated in the local coordinate system that is attached to each microcrack, to the J;-vector evaluated in the
global coordinate system is calculated. It is found that the conservation laws of the J;-vector are still valid in damaged
piezoelectric materials, although in the present problem the elastic and electric fields are coupled which add compli-
cations to the original formulations by Budiansky and Rice. In other words, the total contributions from the micro-
cracks to both components of the J,-vector evaluated in the global system vanish, provided that the selected closed
contour encloses all microcracks and/or discontinuities. © 2001 Published by Elsevier Science Ltd.

Keywords: Conservation laws; Microcrack damage; J-integral; Piezoelectric ceramics; Interacting cracks; Stress intensity factors;
Electric displacement intensity factors; Crack shielding

1. Introduction

Cracks-like defects are abundant in piezoelectric materials, and have been the subject of intensive study
in the past decade (Pak, 1990; Sosa, 1991, 1992; Suo et al. 1992; Pak and Tobin, 1993; Dunn, 1994; Park
and Sun, 1995a,b; Sosa and Khutoryyansky, 1996; Shido et al. 1997; Chung and Ting, 1996; Heyer et al.
1998; Park et al. 1998; Xu and Rajapakse, 1999). Recently, Han and Chen (1999) developed a ‘pseudo-
traction-electric displacement” method to solve the problem of interacting multiple parallel cracks for
transversely isotropic piezoelectric materials. It is shown that, due to crack interactions, the stress intensity
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factors (SIFs) at each crack tip are no longer independent of remote electric loadings, in contrary to those
for single crack problems (Park and Sun, 1995a,b). The formation of multiple parallel cracks next to a
single crack not only relaxes the residual stresses but also disturbs the electric field in the vicinity of the
crack. It is the latter source that leads to the indirect but significant influence of electric loadings on the SIFs
as well as on the mechanical-strain-energy release rate (MSERR). The work of Han and Chen (1999) is an
initial attempt to solve the more general crack-interaction problems, as only the first component of the J;-
vector is concerned due to the assumption that the multiple cracks are parallel with each other and per-
pendicular to the poling direction of the piezoelectric ceramics. For multiple cracks arbitrarily oriented and
distributed in a piezoelectric such that they are not necessarily perpendicular to the poling direction of the
material, the role of electric loading is unclear. Moreover, the validity of the conservation laws of the J-
vector in such situations needs to be established since Chen (2000a,b) has shown that the second component
of the vector must be considered if the interacting cracks are no longer parallel.

This paper presents an analytical and numerical study of and conservation laws of the J;-vector (Bu-
diansky and Rice, 1973) and their application, for strongly interacting and arbitrarily oriented microcracks
in two-dimensional (2-D) anisotropic piezoelectric materials. Following Suo et al. (1992), the physical in-
terpretation of the second component of the J;-vector in such materials is established. The problem is
reduced to a system of integral equations, which are subsequently solved numerically by using the
Chebyshev integration technique. The conservation laws of the Ji-vector established for non-piezoelectric
materials (Budiansky and Rice, 1973; Chen and Hasebe, 1998) are reexamined for the present interacting
problem in piezoelectric materials; numerical results for a PTZ-4 ceramic are given to complement the
analytical work. It is found that the total contributions from a cloud of microcracks in 2-D piezoelectric
materials to each component of the J;-vector evaluated in a global system vanish, if the closed contour
encloses all microcracks.

2. Ji-vector: physical interpretation and conservation laws
2.1. Path independence of Ji-vector

For a plane crack in a 2-D anisotropic piezoelectric material, the J-integral is given by (Suo et al., 1992):

1 1
J = fé [(EUZ/SUdXQ —niaipg—zl:ds) — (ED,Eldx2+n,D,§—de):| (1)

where C refers to a closed contour starting from one point on the lower surface of the crack and ending at
another point on the upper surface of the crack, and oy, &, u,, D;, E;, and ¢ are the stresses, strains,
displacements, electric displacements, electric field components, and electric potential, respectively. Here,
i,j,p =1 and 2, n; is the outer normal to the contour C, and (x;,x;) is the Cartesian coordinate system.

By comparing Eq. (1) with the original interpretation of the J-integral by Rice (1968) for non-piezo-
electric materials, it is seen that the first two terms in Eq. (1) contributed by the mechanical quantities are
identical to those in Rice’s formulation, and the last two terms are additional ones introduced to account
for the contributions from the electric quantities. In other words, although the electric and mechanical
quantities are coupled in the constitutive equations for piezoelectric materials (see e.g., Suo et al., 1992),
they are not directly linked together in Eq. (1).

According to Budiansky and Rice (1973), the J-integral is only the first component of the J,-vector
(k = 1,2), which is parallel to the crack surfaces and will be denoted below by J;. The second component
denoted by J, is perpendicular to the crack surfaces and can be introduced in a similar way as J;:
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1 ou 1 o
Jr = %; [( —EGijEijdxl - nlo-lpa_xjds> - (— zDiEidxl +niDia_xzdS>:| (2)

Note that the J,-integral is in general path-dependent when the integral contour C encloses only one single
tip of a crack. It is therefore likely to be far from significant as it would be in brittle materials (Herrmann
and Herrmann, 1981). However, recent investigations of Chen and Ma (1997) and Chen and Hasebe (1998)
reveal that, for multiple crack interaction problems in traditional non-piezoelectric materials, the J,-integral
plays a role similar to that of J;. This conclusion is reached by assuming, as suggested by Herrmann and
Herrmann (1981), that the closed contour selected for calculating the J,-integral encloses either one single
crack completely or all cracks present in the material. Under this assumption, both components of the J;-
vector are then path independent and hence have equal physical significance.

2.2. Conservation laws: statement

The new conservation laws of the Ji-vector for a 2-D piezoelectric material containing one or more
cracks/discontinuities can be stated as: the total contributions to both J;- and J,-integrals evaluated along a
closed path Cy (Fig. 1) enclosing either a single crack/discontinuity completely or all cracks/discontinuities
vanish. Mathematically, this can be written as:

N
> Sy =0 3)
=1

N
> Sy =0 4)
=1

where N refers to the total number of cracks/discontinuities in the material, and the subscript / refers to the
Ith crack such that J;(;y and J,(;y denote the contributions of the /th crack to the first and second components
of the J;-vector evaluated in a global system (x;,x,). The contribution of the /th crack evaluated in a local
system (x},x3) to the Jy-vector, denoted separately by J{, and J;,, (Fig. 1), are related to Jy(;) and Jy) by:

0
D | ! Poling direction

U?zt._.aﬁ ‘

r, Iy
d
FZ
0
N 6% [ =T+, +T + T
05

Fig. 1. Geometry and conventions for a cloud of randomly distributed and oriented interacting cracks in an infinite piezoelectric solid
subjected to combined mechanical and electric loadings.
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Jl(l) :J{(I)COSB] 7']21(1) sin@l (5)

Jary = Ji(gy sin0; + Jy, cos 0, (6)

where the superscript / is used to denote quantities that are evaluated in the local system (x},x}), and 0; is
the orientation angle of the crack measured from the x;-axis to the x!-axis (Fig. 1).

Egs. (3)-(6) provide the new conservation laws of the J,-vector in strongly interacting multiple crack
problems for piezoelectric materials, which show quite different aspects from those customarily used in
single crack problems for traditional non-piezoelectric materials (see, e.g., Rice, 1968, Budiansky and Rice,
1973, Herrmann and Herrmann, 1981). These have already been proved numerically (Chen and Hasebe,
1998) and analytically (Chen, 2000a) for non-piezoelectric brittle materials. Because Egs. (5) and (6) are
concerned with the projected relations of the J;,-vector between its values in the local system and those in
the global system (Fig. 1), they may also be termed as the projected conservation laws of the J-vector for
strongly interacting cracks in a 2-D solid. For anisotropic piezoelectric materials, the conservation laws (3)-
(6) should be re-examined since the elastic and electric fields are coupled and the displacements and electric
displacements add complications to the original formulations of the vector by Budiansky and Rice (1973).

2.3. Mathematical proof of conservation laws

2.3.1. Definition of problem and selection of boundary conditions

The multi-crack interacting problem to be solved is shown in Fig. 1, where N arbitrarily oriented mi-
crocracks are distributed in an infinitely large, two dimensional anisotropic piezoelectric solid. Assume that
all the microcracks are fully open and not intersecting with each other, and that the distance between the
center of a typical microcrack, say the /th microcrack, and that of its immediate neighbor is of the same
order of magnitude as the average length of the microcracks. In other words, the space among the cracks
may be smaller than the crack length. Therefore, strong interaction amongst the cracks is expected. With
reference to Fig. 1, let @, be the half-length of the /th microcrack, 0, its orientation angle, ¢, its location
angle, and let d; denote the distance of the center of the /th microcrack to the origin of the global system
(x1x2). The remote loading conditions are ¢35 and D3° along the x,-axis and ¢} along the x;-axis. The poling
direction of the piezoelectric material is taken to be parallel to the x,-axis but may not always be per-
pendicular to the microcracks.

For a typical microcrack, three types of electric boundary condition may be used (Pak, 1992; Suo et al.,

1992; Hao and Shen, 1994):

(1) Insulation boundary condition (charge free crack or impermeable crack):

Df =D, =0 (7)
(i1) Conduction boundary condition (permeable or continuous crack):

Dy =D,, ¢"=¢ ®)
(iii) Mixed boundary condition:

Dy =D, Dy(uy—u)=e(d" —¢") ©)
where D and D, are the upper and lower boundary values of the electric displacement on the crack, ¢
and ¢~ are the upper and lower boundary values of the electric potential on the crack, &, is the dielectric

permittivity of the medium inside the crack (as a void), and »; and u, are the upper and lower boundary
values of the displacement on the crack, respectively.
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Since the mechanical and electric quantities are coupled and the three different types of crack boundary
condition would lead to significantly different behaviors of the energy release rate (ERR), there has been
considerable effort to find dominant parameters that govern crack stability and growth in piezoelectric
ceramics. For example, Park and Sun (1995a,b) concluded that neither the SIF nor the J-integral (= J;) are
suitable for describing the stability of an insulated crack; the MSERR was proposed as a new fracture
parameter. In contrary, Heyer et al. (1998) performed a series of experimental measurements based on the
conduction crack condition, and found that the SIF is still a suitable parameter to describe the stability of a
conducting crack. On the other hand, Suo et al. (1992) argued that the permeable condition is not realistic
as there is always an electric potential drop across a crack. More recently, Xu and Rajapakse (1999) de-
veloped a unified formulation for a crack containing either air or vacuum in piezoelectric ceramics.
However, despite all these efforts, the true electric boundary condition on the crack surfaces remains an
issue to be resolved, and is a topic beyond the scope of this paper. The purpose of this paper is not to clarify
the confusion regarding the three types of electric boundary condition but rather to explore if there exist
conservation laws in piezoelectric materials containing strongly interacting cracks. If the conservation laws
indeed exist, these should be valid irregardless of the type of electric boundary condition selected. Con-
sequently, unless otherwise stated, the insulation boundary condition (7) will be used throughout the re-
mainder of this paper.

2.3.2. Mathematical proof

As there has been some doubt about the validity of Egs. (3) and (4), a detailed proof is given below, the
key being the correct use of the remote uniform stress-electric field. Introduce a closed but sufficiently large
contour I'y, = I'y + 'L + ', + I'r surrounding all the cracks, and introduce a smaller closed contour C;
which only encloses the /th crack completely (Fig. 1). According to the path-independent nature of the J;-
integral vector, one has

N

T =" (10a)
=1
N

I = (10b)
=1

where the terms on the left hand side are calculated over I',,, whilst the terms on the right hand side are
calculated over C; with / =1,2,..., N. Since every term in the summation of Eq. (10a) or Eq. (10b) is in
general not equal to zero due to strong interaction amongst the cracks, it is not clear whether the sum-
mation should vanish, or not, as a number of people have suspected.

In order to take full advantage of the remote uniform stress-electric field, the closed rectangular contour
I', has been chosen as large as possible. The reason to introduce the rectangular closed contour rather than
an arbitrary one is to significantly simplify the mathematical manipulations involved. However, due to the
path-independent nature of the vector, the results evaluated along an arbitrary smooth closed contour C
(be it large or small, see Fig. 1) should be identical to those calculated over I',.. It is worth mentioning here
that the second component of the vector is also path-independent, because the closed contour is always
chosen ecither to enlose all the cracks or to enclose a single crack completely (Herrmann and Herrmann,
1981).

Since the traction-free surfaces of each crack lead to non-zero contributions to the second component
(Herrmann and Herrmann, 1981), the three different types of electric boundary condition will also lead to
non-zero contributions to the last two terms of Eq. (2). Of course, different electric conditions are expected
to yield different magnitudes of these contribution, but the path-independent nature of the integral should
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not be altered if the closed contour is chosen as C; (Fig. 1). A universal formulation for a typical crack / in
its local coordinate system (x!,x}) with 0, as the orientation angle can always be written as

aj
Fi= [ Tl =)+ (o = )] ! (1)
—a
where F;, represents the contribution from the surfaces of the /th crack, the superscripts 4+ and — denote
the upper and lower boundary values on the crack surfaces, and the subscripts m and e refer to the me-
chanical energy and electric energy, respectively, given by:

W = 300837 (12a)

VK = 7%D,‘E[ (12b)

Eq. (11) and Egs. (12a) and (12b) will be calculated below by using a technique developed specially for the
current situation.
Since dy =dx, =0 on I'; and I'y, and dx = dx; = 0 on 'y and Ik, the left side of Eq. (10a) becomes

e = /r [ /2) + (~Damd /o) ds + / (War + W2 dy

+/ [(—0nn0u;/Ox) + (—Dyn10¢ /Ox)] ds (13)
Lty

With that n, =1on I'j, i, =—1on Iy, ny =1 on I'r and ny = —1 on I't, (13) can be rewritten as

J*=¢ 05{/ u;dx — /u,ldx]JrDMU ¢ dx — /¢>dx}
* [z“?““‘?’(/b dy‘/, dyﬂ - [ED?E?C (/,, dy‘/addy)]
+aff{/hcu,-‘1dy /adu,-,ldy} +D,°°[/C¢‘1dy/ad¢ﬂldy} (14)

Obviously, the third and forth terms in Eq. (14) vanish because | fb dy — f dy] = 0, whereas the first term
depends on the value of | f u;1dx — [ u;1dx], the second term on the value of | f ¢ dx — f " ¢ ,dx], the fifth
term on the value of [ [} u;dy — fa u;1dy], and the sixth term on the value of [f; ¢ dy — fa ¢ ,dy]. It should
be mentioned that »;; and ¢ in the integrals are defined at infinity since the rectangular closed contour has
been chosen as large as possible.

Now, the remote displacement field must be linear with respect to both x- and y-coordinates so that the
uniform strain field at infinity would be maintained. Similarly, the electric potential should also be linear in
order that the uniform electric displacement field at infinity is sustained. In fact, the remote uniform me-
chanical-electric fields do not depend on the configuration of the N interacting cracks, even if the array of
the cracks is not symmetrical with respect to either x = 0 or y = 0. Therefore, the asymptotic values of u;; at
infinity should be constant, i.e., the integral [ jf u;1dx — f; u,;ldx} should vanish. Similarly, the asymptotic
values of ¢, at infinity should also be constant and hence the integral [ fal ’ ¢ dx — N d{ldx} vanishes.

The situation becomes much more clearer when the original problem shown in Fig. 1 is divided into two
sub-problems. The first involves no cracks, with linear remote displacement and electric potential fields with
respect to both x- and y-coordinates; the second involves N cracks with self-balanced tractions as well as
self-balanced electric displacements acting on both surfaces of each individual crack, and no remote loading
is applied. The detailed configuration of such subdivision is well-known, and hence is not repeated here. It
suffices to mention that the second sub-problem yields zero displacement field at infinity because the stresses
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and strains caused by the self-balanced surface tractions have an asymptotic nature with the order of 72
(for large values of r = y/x2 + »?). Thus, the remote displacement field is only dominated by the first sub-
problem, resulting in u;;(on I'y) = u;(on I'). A similar result holds for the electric field at infinity. These
results leads directly to the conclusion that the first, second, fifth and sixth terms in Eq. (14) should all
vanish, no matter how many cracks are present in the finite region of an infinite 2-D piezoelectric solid and
whether the array of the cracks is symmetrical with respect to x = 0 (or y = 0) or not. Therefore, Eq. (3) as a
new conservation law of the J;(=J) integral has been proved. Its validity will be confirmed further in
Section 3 using numerical examples. Similarly, a straightforward manipulation can be given for Eq. (4)
representing a new conservation law of the J, integral. For brevity, details are not repeated here.

Obviously, such vanishing nature of the vector does not depend on the shape of the cracks enclosed by
the closed contour C, (Fig. 1). Therefore, other types of discontinuity such as curved cracks, bifurcated
cracks, voids with arbitrary shapes, and inclusions, all enclosed by the contour C, will also satisfy Egs. (3)
and (4). The detailed expressions of the contributions from different types of discontinuity to the vector may
of course be different, but the total summation of the contributions should vanish. It is important to note
that the manipulations performed hitherto are independent upon the type of the electric boundary con-
dition imposed on the crack surfaces. In other words, the conservation laws are always valid, irregardless of
the type of electric boundary condition selected.

3. Numerical examples

To prove the conservation laws with numerical examples, an initial attempt has been made by Han and
Chen (1999) who considered parallel microcracks oriented in a direction perpendicular to the poling di-
rection of a transversely isotropic piezoelectric material. Therefore, only the J)-integral is calculated since
the contribution of Jj , to Ji; in Eq. (5) vanishes due to the fact that the orientation angle 0, = 0 for this
simple array of cracks.

For the problem shown in Fig. 1, the situation is much more complicated than that considered by Han
and Chen (1999). The randomly oriented and distributed microcracks are no longer parallel with each
other; they also are not necessarily perpendicular to the poling direction of the material. It is then expected
that the le(,) integral in the local system will play an important role as it would be in non-piezoelectric
materials (Chen, 2000a). Before this can be verified, it is important to first find an accurate method to
calculate numerically J2’<,> in the local coordinate system (x},x}), since Herrmann and Herrmann (1981)
have shown that, besides the two crack tips of the /th microcrack, the traction-free surfaces of the I/th
microcrack also contribute to Jj . Such a method is introduced below.

To calculate J2’( )» @ typical crack of length 2g; is shown in Fig. 2 in a local coordinate system, where a
special closed contour is introduced:

C,=C; +C}~Cf —Cf (15)

where the superscripts + and — refer to the upper and lower surfaces of the crack, R and L refer to the right
and left tips of the crack, and C} and C} denote two infinitely small circles with the radius p — 0 (Fig. 2),
respectively.

The calculation of J; ,, along C; can be divided into two parts, one contributed by both tips of the crack
along path C} and C}, and the other induced from the crack surfaces along path C;” and C; . The special
technique proposed by the present authors and co-workers (Chen and Ma, 1997) for anisotropic elastic
materials is adopted here. The integration of J; along an infinitely small circle surrounding a crack tip may
be obtained by using the following ERR relationship (Chen and Ma, 1997):
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Fig. 2. Special closed contour for a single crack in local coordinates.

Y
Sy =—g= 513(1)2—; /0 on(4 = plui(p)dp (i=1,2) (16)
where J; refers to the contribution from a single crack tip to the J,-integral and g denotes the ERR as
defined by Chen and Ma (1997).

The validity of Eq. (16) will be checked against numerical results presented below. As regards the
contribution of both surfaces of the crack to .J; ), there are no special difficulties to be overcome as long as
all mechanical and electric quantities along C* and C~ are known a priori. It will be shown in Section 3.1
that these quantities can be determined by employing the complex function method and performing the
Chebyshev numerical integration.

3.1. Pseudo-traction-electric-displacement method

The interaction problem among N cracks in an anisotropic piezoelectric material (Fig. 1) can be solved
by extending the pseudo-traction method developed by Horii and Nemat-Nasser (1985, 1987) for solving
multiple crack interaction problems in non-piezoelectric materials. The key here is to decompose the
original problem into N sub-problems, each containing one single crack with pseudo-tractions and pseudo-
electric-displacement assigned to both of its surfaces. Once the fundamental solutions for a single crack
loaded by concentrated tractions and concentrated electric displacement on both crack surfaces are found,
the following set of Fredholem integral equations can be derived from simple superposition (Han and
Chen, 1999):

0 (I=1,2,3,....N,j#1) (17)

=
—
N
+
q\.
<
S
~
I

Here, P(s) denotes a function vector with the unknown pseudo-tractions and electric-displacement on both
surfaces of the /th crack as its elements, and ¢/°(s) refers to the stresses and electric displacement arising
from the remote loading ¢> and D5°, given by

d"(s) = Rjo™ (18)
where

T
o0 o0 oo (o]
0> = [073,0%,0,D5]

(19)
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lcos20 1sin20 0 0
—1sin20  cos*0 0 0

R, = 0 0 cosf 0 (20)
0 0 0 cos 0
Furthermore, in Eq. (17), 6"(s) denotes the contribution of the rest of the microcracks to the /th crack:
aj r
s = [ PP tdr (20 e1)
—a
where
P/ (x) = [P/ (x), P (x), P{(x), D5 ()] (22)

and F(s,x) is the influence function on the /th crack induced from the jth crack (Han and Chen, 1999).
The integral equation (17) can be solved numerically by expanding P")(s) into the second Chebyshev
polynomial:

P'(s) = ZG,iUk(s/a,) (23)
where
G, = / 1 2V1 — 2P (ax) Uy (x) /mdx (24)

and Uy (s/a,) is the second Chebyshev polynomial with order k, and M is an integer number controlling the
numerical accuracy.

Once Eq. (17) is solved, the SIFs and the electric displacement intensity factor (EDIF) at the right and
left tips of the /th crack can be straightforwardly calculated as:

aj
KR — _/ P'(s)(a; + 5)"*(a; — s)"(ma;) " *ds (25)
,a,
aj
K== [ Py 5" 9) ) (26)
,a,
where K® = [K/R KR KR KR (27)
K™ = [Kit K" Ky, K (28)

Here, the subscripts I, II, and III refer to the Mode I, Mode 11, and Mode III SIFs, respectively, the
subscript e denotes to the EDIF, and the subscripts /, R, and L represent separately the /th crack, its right
and left tips.

The first component of the J;-vector evaluated in the local coordinate system (x!,x}) origined at the
center of the /th crack can be calculated as (see, for example, Suo et al. 1992)

1

JllR — Z (KIR)THKIR (29)
Jl]L — %(K]L)THKIL (30)

On the other hand, from Eq. (16), it can be shown that the second component is given by:
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JiR = L(K™)"XHK™® (31)

Jit = —4K")"XHK" (32)
where the matrix H is
H = 2Re(iAB™) (33)

for which the matrices X, A , and B can be found in Suo et al. (1992).

Note that J;® and J;" only represent contributions of the right and left tips of the /th crack to J},, in the
local coordinate system (x1,x} ); they are calculated along CR and C} as p — 0 (Fig. 2). To calculate the full
value of J;,, the contribution from both surfaces C;” and C; must included. However, since the integral
equation (17) has already been solved numerically so that all the mechanical and electric quantities on the
surfaces of the /th crack are now determined, the contribution of crack surfaces can be calculated nu-
merically by using Eq. (11). Finally, the total contribution of the /th crack to the second component of the
Ji-vector in the local coordinate system (x!,x} ) is obtained as

Sy =I" + I+ i
1 IR\T IR 1 ILN\T IL “ + — (34)
:Z(K ) XHK —Z(K YXHK™ + [ (W' —w)ds

—a;

The contribution of the /th crack to the vector in the global system can then be evaluated by using the
projected relations (5) and (6).

3.2. Numerical results

Although the results presented above are derived for general anisotropic piezoelectric materials, for
simplicity, the numerical results to be given below will be limited to a transversely isotropic piezoelectric
material, i.e., the PTZ-4 ceramic, with its material constants given in Table 1. It is assumed that the poling
direction of the ceramic is parallel to the x,-axis (Fig. 1).

First, the formulation for calculating the J,-integral induced only from one tip of a single crack em-
bedded in the PTZ-4 ceramic is examined. Table 2 shows that the values derived by using Eq. (2) coincide
well with those derived by using the ERR relation (16), no matter how the Mode I and Mode II SIFs and
the EDIF at infinity are combined. Judging from the results of Table 2, one may conclude that the de-
rivative procedure, i.e., Eq. (16), is not only valid for anisotropic elastic materials (Chen and Ma, 1997), but
also valid for transversely isotropic piezoelectric ceramics.

The conservation laws of the J;-vector, i.e., Egs. (3) and (4), are examined next by introducing an array
of four microcracks (Fig. 3), each of length 24, with orientations and locations specified in Table 3. Here, d,,
¢;, 0;, and x5y, and x>y (I = 1, 2, 3, and 4) denote separately the location distance from the origin, location

Table 1
Material constants of PTZ-4 ceramics
Cy Ci Ci3 Cs3 Cy Unit
1.4020 0.7892 0.7565 1.1577 0.2525 (N/m?) x 10"
e3) €33 €15
—5.2677 15.4455 12.0000 (C/m?)

Wi Wi3

0.6359 0.5523 (C/Vm) x 10
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Table 2

Numerical examination for the J,-integral (2) and the ERR g in Eq. (16) under combined mechanical and electric loading conditions
KH/K[ K[/K[ KH]/KI Kév r=20.1 r=10

S/ —g/ S —g/Jy

0.5 0.5 0.0 0.0 1.31667 1.31667 1.31667 1.31667
0.5 1.0 0.0 0.0 1.06462 1.06462 1.06462 1.06462
1.0 0.5 0.0 0.0 1.04227 1.04227 1.04227 1.04227
0.5 0.5 0.0 1.0 —0.18119 —0.18119 —0.18119 —0.18119
1.0 1.0 0.0 1.0 —5.37522 —5.37522 —5.37522 —5.37522

(KY = K./(108K;CN ).

Crack 2 Crack 1

X

Crack 3 Crack 4

Fig. 3. Geometry and conventions for four interacting cracks.

Table 3
Orientations and relative positions of four microcracks
1 1 2 3 4
0, Variable —25° 55° 30°
®, 45° 140° 260° 340°
d; 1.6a 1.4a 1.3a 1.6a
X1(1) 1.1314a —1.0725a —0.2257a 1.5035a
X21) 1.1314a 0.9000 —1.2803a —0.5472a

angle, orientation angle, and position coordinates of the center of the /th microcrack in the global coor-
dinate system (x;,x;). Without loss of generality, three types of remote loading condition are considered: (i)
pure Mode I mechanical loading, with 675 = 635 = D5° = 0 and o5 > 0; (ii) Mode I mechanical loading
combining with positive electric loading, with 55 = ¢35 = 0, 055 > 0, and DY = 10-*633C/N; (iii) Mode I
mechanical loading combining with negative electric loading, with ¢35 =0% =0, ¢ >0, and
Dy = —107%¢55C/N. Numerical experiments reveal that a value of 41 for the total number of terms M in
the Chebyshev polynomial (23) yields satisfactory accuracy for all three types of remote loading condition;
M = 41 is therefore used in all subsequent numerical calculations.

For type (ii) remote loading condition (Mode I mechanical loading combining with positive electric
loading), Table 4 shows the values of J,;) (I =1,2,3,4) contributed by the four microcracks to the J-
integral. Here, the J;-vector is normalized by
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Table 4

Values of Jy(;)/Jy (I =1,2,3,4) under combined mechanical and positive electric loading (type (ii) loading)
0, 0° 30° 60° 90° 120° 150°
Jin/Jo —0.0200 —0.2377 —0.0594 0.0032 —0.0536 —0.0020
Ji2) /o —0.0123 0.2293 0.0475 —0.0415 —0.0824 —0.0993
Ji3) /o 0.0763 0.0960 0.1401 0.1278 0.0964 0.0774
Jiay /o —0.0439 —0.0875 —0.1282 —0.0895 0.0396 0.0239
> Jy /o 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5

Values of J5;)/Jy (I =1,2,3,4) under combined mechanical and negative electric loading (type (iii) loading)
0, 0° 30° 60° 90° 120° 150°
Sy /o —0.1308 —0.0281 0.1020 0.0114 —0.0121 0.0144
J0) /o 0.2673 0.1305 —0.0379 —0.0074 0.0386 0.1247
Jo3) /o —0.2342 —0.2310 —0.2538 —0.2831 —0.2639 —0.2419
Joa) /o 0.0977 0.1286 0.1897 0.2791 0.2374 0.1028
>/ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P
Jo = Z (Ko) H()Ko (35)

where K, and Hj are the fundamental solutions for a single crack, oriented parallel to the x;-axis, subjected
to the same type (ii) loading condition. The orientation angle 0, of the first microcrack in Table 3 is taken
to be 0°, 30°, 60°, 90°, 120°, and 150°, respectively. It is seen from Table 4 that the summation of
Jigy (1 =1,2,3,4) indeed vanishes, confirming the conservation law (3). Table 5 presents the numerical
results for Jy) under type (iii) loading condition (Mode I mechanical loading combining with the negative
electric loading). Again, the summation of J,y (I =1,2,3,4) is seen to vanish, as suggested by the con-
servation law (4). Thus, the conservation laws of the J;-vector (3) and (4) for non-piezoelectric materials
(Chen and Hasebe, 1998; Chen, 2000a) have been shown to be equally valid for multiple crack interaction
problems in piezoelectric materials. That is, the summation of the contributions induced from all the mi-
crocracks to each component of the J;-vector always vanishes, even though the values of J;) and J, for
each individual microcrack are far from zero due to strong crack interactions. Consequently, the conser-
vation laws as formulated by Egs. (3) and (4) provide not only a consistency check of the numerical results
presented in this section but also a powerful tool to examine the validity of the ‘pseudo-traction-electric-
displacement’ method developed in Section 3.1.

4. Applications: two arbitrarily located interacting cracks

In this section, the pseudo-traction-electric-displacement method is used to study in detail the interaction
effect between two arbitrarily located microcracks (Fig. 4) on crack tip parameters such as SIFs and EDIF.
The two cracks are embedded in an infinitely large PTZ-4 ceramic. Crack 1 is always parallel to the global
coordinate axis x;, whereas the position and orientation of crack 2 with respect to crack 1 are arbitrary. Let
2a denote the length of the microcracks, and let 6,, ¢, and d, represent the orientation angle, location
angle, and distance from tip 4 of crack 1 to the center O, of crack 2, respectively. For illustration, the
normalized distance between the two crack centers is taken as dj,/a = 1.2, the orientation angle of crack 2
is assumed to be ¢, = 60°, whilst the location angle of crack 2, 6,, varies from 0° to 180°. All three types of
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G5V
22
D3V
2
Fig. 4. Geometry and conventions for two arbitrarily located and oriented interacting cracks.
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02

Fig. 5. Normalized Mode I SIF at tip 4 of crack 1, Ki/K7, plotted as a function of its orientation angle of crack 2, 6,, for type (i), (ii),
and (iii) loading conditions (D5° /655 = 0, 1078, —1078C/N, respectively).

remote loading condition discussed in the previous sections are examined, with D5°/63 =0, 1078,
—1073C/N, respectively.

Fig. 5 plots the normalized Mode I SIF at the tip 4 of crack 1 (see Fig. 4) as a function of the location
angle 0 of crack 2 for types (i), (ii), and (iii) loading conditions. Although the trends are in general similar,
there is considerable deviation of the dotted lines corresponding to types (ii) and (iii) loading conditions
from the solid line corresponding to the pure mechanical loading (type (i)). Moreover, the positive electric
loading (type (ii)) and negative electric loading (type (iii)) have opposite effects on the SIF. That is, for
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certain values of 0,, e.g., the range between 3° and 34° or the range between 63° and 112°, the positive
electric loading tends to decrease the SIF whereas the negative electric loading tends to increase the SIF.
For other ranges of 0,, e.g., the range between 34° and 62° or the range between 112° and 180°, the roles of
the positive and negative electric loading reverse. Four electric-neutral angles (ENA), 3°, 34°, 63° and 112°,
can be identified on Fig. 5, where neither positive nor negative electric loading influences the value of SIF.

Of great interest is the influence of remote electric loading on the position of the maximum interacting
effect angle (MIEA) (Fig. 5), which is defined here as the location angle of crack 2 that leads to the
maximum interacting effect between the two cracks. Fig. 5 suggests that the electric loading shifts the value
of MIEA, which is about 60° under pure mechanical loading (type (i)): a positive electric loading decreases
MIEA but increases the crack interaction effect; a negative electric loading increases MIEA whereas reduces
the interacting effect. These are apparently non-linear effects of the electric loading on SIF. In other words,
although the positive and negative electric loadings have opposite effects on SIF, the effects are not pro-
portional. Fig. 6 presents the normalized Mode I SIF at the tip B of crack 2 as a function of 0. The trends
are similar to those discussed above for Fig. 5.

The results shown in Figs. 5 and 6 for the two interacting cracks problem are quite different from those
given in Sosa (1991, 1992) for the single crack problem. Sosa (1991, 1992) found that the remote electric
loading has no influence on the Mode I SIF at the tip of a single crack embedded in an infinitely large
piezoelectric solid. In the present problem with two interacting cracks, the second crack centered at O, (Fig.
4) not only releases stresses in the vicinity of tip 4 of the first crack centered at O;, but also disturbs the
near-tip electric field at 4. Similarly, the stress and electric fields in the vicinity of tip B of crack 2 are
disturbed by the presence of crack 1. These are believed to be the reasons behind the coupling between
electric loading and Mode I SIF for strongly interacting cracks.

The EDIF at crack tips 4 and B are shown in Figs. 7 and 8 as functions of 0, respectively. Again, it is
seen that the positive and negative electric loadings have opposite effects on EDIF. However, in contrast to
the case of Mode I SIF (Figs. 5 and 6), their influence on EDIF is apparently proportional because the
mechanical loading has little influence on EDIF (see the solid lines in Figs. 7 and 8). The maximum in-
fluence of remote electric loading on EDIF occurs at about 62° for tip 4 (Fig. 7) and at about 55° for tip B
(Fig. 8). Moreover, the influence of electric loading on EDIF depends strongly upon the orientation of the
second crack. An electric neutral angle of about 90°, at which neither positive nor negative electric loading
has influence on the EDIF at tip B, is seen to exist in Fig. 8. It corresponds to the case that crack 2 is

0
0O 20 40 60 80 100 120 140 160 180
02

Fig. 6. Normalized Mode I SIF at tip B of crack 2, K;/K}, plotted as a function of its orientation angle of crack 2, 0,, for type (i), (i),
and (iii) loading conditions (D5° /035 = 0, 1075, —1078C/N, respectively).
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Fig. 7. Normalized EDIF at tip 4 of crack 1, K, /KIO, plotted as a function of its orientation angle of crack 2, 6, for type (1), (ii), and (iii)
loading conditions (D5 /a5 = 0, 1078, —1078C/N, respectively).
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Fig. 8. Normalized EDIF at tip B of crack 2, K./K?, plotted as a function of its orientation angle of crack 2, 0,, for type (i), (ii), and (iii)
loading conditions (D5°/a55 = 0, 1078, —1078C/N, respectively).

parallel both to the poling direction of the piezoelectric material and to the direction of remote electric

loading. However, no such electric neutral angle exists in Fig. 7 for tip A4 since crack 1 is always perpen-
dicular to the poling direction as well as the electric loading direction.

5. Conclusions

Based on the results presented in this paper, the following conclusions can be summarized:
(1) The Jy-integral in piezoelectric materials can be divided into two separated parts, corresponding to

the mechanical and electric quantities, although both are coupled in the constitutive equations of the
materials.
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(2) The conservation laws (3) and (4) found in non-piezoelectric materials also hold for piezoelectric
materials. In other words, the total contributions to both components of the J;-vector due to a cloud of
randomly distributed, interacting microcracks in 2-D-piezoelectric materials vanish, provided that the
closed contour along which the integration is performed encloses all the microcracks (or, equivalently, no
other discontinuities exist outside of the closed contour).

(3) The conservation laws (3) and (4) can be used as a powerful tool to check the validity of numerical
results and the corresponding numerical methods for strongly interacting multiple crack problems in pi-
ezoelectric materials, although they only provide two necessary conditions rather than sufficient conditions.

(4) The remote electric displacement loading has significant influence on the magnitudes of crack tip SIFs
and EDIF. However, the trends exhibited by the SIFs at each crack tip subjected to combined mechanical
and electric loading are similar to those under pure mechanical loading.

(5) Positive and negative electric loadings impose opposite effects on crack tip SIFs for interacting
cracks. The influence is strongly non-linear due to crack interaction, depending on the relative locations
and orientations of the cracks. For certain crack arrays, a positive electric loadings increases the crack tip
SIFs whereas a negative electric loading decreases the crack tip SIFs. The reverse is true for other crack
arrays. In general, both electric and mechanical loadings can have profound effects on crack tip SIFs:
neither can be neglected.

(6) In contrary to the crack tip SIFs, the effect of remote electric loadings on crack tip EDIF is linear,
because the remote mechanical loadings have little or no influence on EDIF. However, in the presence of
remote electric loadings (positive or negative), the variation trends exhibited by the EDIF as the positions
and orientations of the cracks are varied are rather complicated, depending strongly on the orientation of
each crack relative to the poling direction of the piezoelectric. Further research is needed to fully under-
stand the mutual shielding effect in interacting cracks.
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